- If fork() returns a negative value, the creation of a child process was unsuccessful.
- fork() returns a zero to the newly created child process.
- fork() returns a positive value, the process ID of the child process, to the parent. The returned process ID is of type pid_t defined in sys/types.h. Normally, the process ID is an integer. Moreover, a process can use function getpid() to retrieve the process ID assigned to this process.
Suppose the above program executes up to the point of the call to fork() (marked in red color):
#include <stdio.h> #include <string.h> #include <sys/types.h> #define MAX_COUNT 200 #define BUF_SIZE 100 void main(void) { pid_t pid; int i; char buf[BUF_SIZE]; fork(); pid = getpid(); for (i = 1; i <= MAX_COUNT; i++) { sprintf(buf, "This line is from pid %d, value = %d\n", pid, i); write(1, buf, strlen(buf)); } }
- make two identical copies of address spaces, one for the parent and the other for the child.
- Both processes will start their execution at the next statement following the fork() call. In this case, both processes will start their execution at the assignment statement as shown below:
What is the reason of using write rather than printf? It is because printf() is "buffered," meaning printf() will group the output of a process together. While buffering the output for the parent process, the child may also use printf to print out some information, which will also be buffered. As a result, since the output will not be send to screen immediately, you may not get the right order of the expected result. Worse, the output from the two processes may be mixed in strange ways. To overcome this problem, you may consider to use the "unbuffered" write.
If you run this program, you might see the following on the screen:
Process ID 3456 may be the one assigned to the parent or the child. Due to the fact that these processes are run concurrently, their output lines are intermixed in a rather unpredictable way. Moreover, the order of these lines are determined by the CPU scheduler. Hence, if you run this program again, you may get a totally different result.Consider one more simple example, which distinguishes the parent from the child. Click here to download this file fork-02.c.
................ This line is from pid 3456, value 13 This line is from pid 3456, value 14 ................ This line is from pid 3456, value 20 This line is from pid 4617, value 100 This line is from pid 4617, value 101 ................ This line is from pid 3456, value 21 This line is from pid 3456, value 22 ................
In this program, both processes print lines that indicate (1) whether the line is printed by the child or by the parent process, and (2) the value of variable i. For simplicity, printf() is used.When the main program executes fork(), an identical copy of its address space, including the program and all data, is created. System call fork() returns the child process ID to the parent and returns 0 to the child process. The following figure shows that in both address spaces there is a variable pid. The one in the parent receives the child's process ID 3456 and the one in the child receives 0.
#include <stdio.h> #include <sys/types.h> #define MAX_COUNT 200 void ChildProcess(void); /* child process prototype */ void ParentProcess(void); /* parent process prototype */ void main(void) { pid_t pid; pid = fork(); if (pid == 0) ChildProcess(); else ParentProcess(); } void ChildProcess(void) { int i; for (i = 1; i <= MAX_COUNT; i++) printf(" This line is from child, value = %d\n", i); printf(" *** Child process is done ***\n"); } void ParentProcess(void) { int i; for (i = 1; i <= MAX_COUNT; i++) printf("This line is from parent, value = %d\n", i); printf("*** Parent is done ***\n"); }
No comments:
Post a Comment