Pages

Monday, May 16, 2011

比较排序算法——插入排序(Insertion Sort)


插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。第i遍处理仅将L[i]插入L[1..i-1]的 适当位置,使得L[1..i]又是排好序的序列。要达到这个目的,我们可以用顺序比较的方法。首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个 位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。

图1 对4个元素进行插入排序

图1 对4个元素进行插入排序
在下面的插入排序算法中,为了写程序方便我们可以引入一个哨兵元素L[0],它小于L[1..n]中任一记录。所以,我们设元素的类型 ElementType中有一个常量-∞,它比可能出现的任何记录都小。如果常量-∞不好事先确定,就必须在决定L[i]是否向前移动之前检查当前位置是 否为1,若当前位置已经为1时就应结束第i遍的处理。另一个办法是在第i遍处理开始时,就将L[i]放入L[0]中,这样也可以保证在适当的时候结束第i 遍处理。下面的算法中将对当前位置进行判断。

插入排序算法如下:

procedure Selection_Sort(var L:List);
var
i,j:position;
v:ElementType;
begin
1 for i:=First(L)+1 to Last(L) do
    begin
2     v:=L[i];
3     j:=i;
4     while (j<>First(L))and(L[j-1]< v) do  //循环找到插入点
        begin
5         L[j]:=L[j-1];  //移动元素
6         j:=j-1;
        end;
7     L[j]:=v;  //插入元素
    end;
end;

下面考虑算法Insertion_Sort的复杂性。对于确定的i,内while循环的次数为O(i),所以整个循环体内执行了∑O(i)=O(∑i),其中i从2到n。即比较次数为O(n2)。如果输入序列是从大到小排列的,那么内while循环次数为i-1次,所以整个循环体执行了∑(i-1)=n(n-1)/2次。由此可知,最坏情况下,Insertion_Sort要比较Ω(n2)次。

如果元素类型是一个很大的纪录,则算法第5行要消耗大量的时间,因此有必要分析移动元素的次数。经过分析可知,平均情况下第5行要执行n(n-1)/4 次,分析方法与冒泡排序的分析相同。如果移动元素要消耗大量的时间,则可以用链表来实现线性表,这样Insertion_Sort可以改写如下(当然前一 个算法同样也适用于链表,只不过没下面这个好,但是下面算法这个比较复杂):

注意:在下面的算法中链表L增加了一个哨兵单元,其中的元素为-∞,即线性表L的第一个元素是L^.next^

procedure Selection_Sort_II(var L:PList);
var
i,j,tmp:Position;
begin
1  if L^.next=nil then exit; //如果链表L为空则直接退出
2  i:=L^.next;  //i指向L的第一个元素,注意,L有一个哨兵元素,因此L^.next^才是L的第一个元素
3  while i^.next<>nil do
     begin
4      tmp:=i^.next;  //tmp指向L[i]的下一个位置
5      j:=L;
6      while (j<>i)and(tmp^.data>=j^.next^.data) do //从前向后找到tmp的位置,tmp应该插在j后面
7      j:=j^.next;
8      if j<>i then  //j=i说明不需要改变tmp的位置
         begin   
9          i^.next:=tmp^.next;  //将tmp从i后面摘除
10         tmp^.next:=j^.next;  //在j后面插入tmp
11         j^.next:=tmp;
         end
12     else i:=i^.next;  //否则i指向下一个元素
    end;
end;

上述改进算法主要是利用链表删除和插入元素方便的特性,对于数组则不适用。

插入排序法是一个原地置换排序法,也是一个稳定排序法。插入法虽然在最坏情况下复杂性为θ(n2),但是对于小规模输入来说,插入排序法是一个快速的原地置换排序法。许多复杂的排序法,在规模较小的情况下,都使用插入排序法来进行排序,比如快速排序和桶排序。

No comments:

Post a Comment